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Analysis of a Micmstrip Line Terminated with a

Shorting Pin
Wer~-Jiunn Tsay and James T. Aberle

Abstract—A full-wave moment method solution to the prob-

lem of a semi-infinite microstrip line terminated with a shorting
pin is presented. The electric current on the lint? is expanded in

terms of longitudinal piecewise sitmsoidal modes near the open

end, with entire domain traveling-wave modes to represent in-
cident and reflected waves away from the open end. Also, the
electric current near the shorting pin is simulated by an at-

tachment mode which insures continuity of the current between
the pin and the line and models the rapidly-varying current on
the line near the feed connection point. Results are given for
the magnitude of the reflection coefficient andl are compared

with experimental data.

I. INTRODUCTION

BECAUSE of its easy mounting capabilities and inex-

pensive fabrication processes, microstrip line is the

most often selected transmission medium for use in mi-

crowave and millimeter-wave integrated circuit applica-

tions.

Discontinuities in the microstrip line are frequently used

as circuit elements in device design. Because these dis-

continuities are rarely amenable to closed-form solution,

some level of modeling must be used in their design and

analysis. The simplest and most computationally efficient

models use quasi-static techniques to describe the discon-

tinuities in terms of equivalent lumped-element circuits.

Such models are used in many computer-aided design

(CAD) packages. However, these simple models are often

inadequate for use in the design of many advanced sys-

tems, because they fail to account fully for the electro-

magnetic effects of the discontinuities.

In many cases, it is uneconomical or impossible to fine-

tune the circuit once it has been fabricateci. As a result,

circuit designers are forced to perform a costly iterative

cut-and-try stage in the design. Thus, there has been a

great deal of interest in more accurate treatments of mi-

crostrip discontinuities [ 1]–[7]. Because many of these

more rigorous solutions require large amounts of com-

puter time and memory, they have to date been considered

unattractive candidates for use in a CAD package. How-

ever, recent advances in the capabilities of engineering
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workstations and supercomputers are helping to alleviate

this situation. In the near future, we cam expect significant

improvements in this area.

Because of significant advantages over the method of

lines [7]-[8] and the finite difference method [4]-[6], the

integral equation technique [9] –[ 16] is the best approach

for the invetsigation of microstrip discontinuities. The

most appropriate method for obtaining the integral equa-

tion description of the problem under consideration is the

spectral domain approach [11], [12], [18]. Formulation

of the problem is facilitated in the spectral domain since

the Green’s function for the planar structure is given in

closed-form. While variational solutions for the integral

equations have been obtained [9], better accuracy can be

obtained using the moment method.

Numerical models for the discontinuities studied here
have been developed using the spectral domain approach

to obtain an electric field integral equation (EFIE) de-

scription of the problem. The EFIE is discretized using

the moment method, and the resulting matrix equations

are solved on the computer.

The solution presented here represents an attempt to ex-

tend the theory of [12] to the case of a microstrip line

terminated with a shorting pin. At lower frequencies, the-

oretical and experimental results closely agree with each

other. But, error can be as large as 30% at higher fre-

quencies. We attribute these errors at higher frequencies

mainly to the neglect of the transverse current component.

More work is needed to overcome this deficiency.

II. THEORY

Consider a semi-infinite microstrip line with a shorting

pin connected to the ground plane in the vicinity of the

open end, as shown in Fig. 1. The ground plane, micro-

strip line and shorting pin are all assumed to comprise

perfect electric conductor, and the substrate is assumed to

be infinite in the x- and y-directions. The substrate is of

thickness d which is assumed to be very thin such that

only the fundamental mode can propagate in the micro-

strip line. The upper conductor has width w. The pin con-

nection point is located at (x, y) = (.xP, YP), and the radius

of the pin is rO, which is assumed to be much smaller than

the effective wavelength.

The full-wave solution for this problem developed here

requires 1) the infinite grounded dielectric slab dyadic

Green’s function for the electric field due to an electric

0018-9480/92$03.00 @ 1992 IEEE
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Fig. 1. Open-end microstrip line terminated with a shorting pm.

current distribution, 2) the effective propagation constant

of an infinitely long microstrip line, and 3) current expan-

sion modes that can accurately account for the natural cur-

rent behavior of the structure. We set up an integral equa-

tion description of the boundary condition that the

tangential electric field must vanish on the microstrip line

and the shorting pin, and expand the unknown current in

a suitable set of basis functions. By following Galerkin’s

procedure, we can determine the unknown current and,

thus, the voltage reflection coefficient of the discontinu-

ity. This solution is ‘ ‘full-wave” because all of the elec-

tromagnetic features of the problem such as surface wave

and radiation effects are included in the solution since the

the exact Green’s function for the structure is used.

The dyadic Green’s function for the electric field due
to an electric current distribution in and on a grounded

dielectric slab is well-known in both spatial and spectral

domain forms. In this paper, the spectral domain form is

used.

In dyadic form, the Green’s function can be written as

~ = iEu3 + dEXY~ + AEXZ2 + jEYXk + jEYYj

o eJky(X‘x(’) eJ~”(Y‘}[’) dk, dkY (2)

and EPJx, y, z IXO, yo, ZO) is the p-directed electric field at

the point (x, y, z) due to an infinitesimal @directed current

element at (xO, y., z.). The GP~’s required in this analysis

are given in the Appendix.

The effective propagation constant of an infinitely long

microstrip line is also required for this analysis and may

be obtained using the full-wave technique described in

[12]. The method of solution involves expanding the elec-

tric current density on the microstrip line and on the short-

ing pin, then formulating an electric field integral equa-

tion (EFIE) which can be solved by the method of

moments for the reflection coefficient and the unknown

expansion currents. The choice of basis functions affects

the computational efficiency quite significantly, so a ju-

dicious choice is important.

Because of the complicated discontinuous nature of the

current on the microstrip line near the pin attachment

point, it is very difficult to accurately describe the current

behavior of this discontinuity using simple basis func-

tions. The approach used here is similar to the one used

in [18],

There are three kinds of basis functions used here,

which are the sinusoidal modes, the piecewise sinusoidal

(PWS) modes, and the attachment mode. Fig. 2 qualita-

tively illustrates these modes. For sinusoidal and piece-

wise sinusoidal modes, the current distribution in the

y-direction is assumed to be Maxwellian.

Since we assume only the fundamental microstrip mode

can propagate down the line when it is away from the

open end and the shorting pin, it is reasonable to use sin-

usoidal functions to represent incident and reflected trav-

eling waves of the fundamental microstrip mode. Subsec-

tional (piecewise sinusoidal) modes are used near the open

end to represent currents that do not conform to the fun-

damental mode as in [12]. These basis functions together

with their Fourier transforms (required for the spectral do-

main analysis) are described in detail in [12].

A critical component of our solution is the use of a suit-

able basis function which can insure continuity of current

from the microstrip line to the shorting pin and model the

rapidly-varying surface current near the pin connection

point. The method used to generate this attachment mode

is similar to [18].

Because the line is semi-infinite, it is assumed that the

part of the attachment mode on the microstrip line only

exists between x = O and x = L1. Using this assumption,

we can obtain an equivalent model for generating an at-

tachment mode with the desired properties. The equiva-

lent model is shown in Fig. 3, and consists of a uniform

current probe exciting a rectangular cavity comprising

perfect electric conductor on top and bottom and perfect

magnetic conductor around the sides. Since d is very thin

we can assume that there is no z-variation and only TMZ

modes can exist inside the structure. This equivalent

model can be treated as a traditional boundary value prob-

lem.

Solving for the surface current density on the upper

conductor, we obtain

“‘1(Wcos(:o7U(x, y) = & ~~oE Cos

sin [~X,,(Ll – x – x,)] + sgn (.x – x,) sin [fl.,,,(~1 – I X – .Tp 1)

sin (6.,, Ll)

(3)
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where

‘gn(’)= [-:: ::::1

(4)

(1 - Z@c(x, y, d) + j(l + R)i,(x, y, d)

N

+ ~~1Zj2j(X,y, d) + ‘.E.’(x>Y> ‘) = 0>

on the line. (8)

“‘T (: Y;)+Y)7ay(x, y) = < x —Cos
Cos [pxn(Ll – x – q] + Cos [pxn(Ll – lx – Xp l)]

(5)
w n=l w P.,n sin (6X,, Ll)

The z component of the attachment mode exists on the pin

and is given by

7.,(X> y) = 26(X – q a(y – yp). (6)

The attachment mode basis function described by (3),

(5), and (6) exhibits proper behavior near the pin connec-

tion point and enforces continuity of current (through the

end-charge cancellation concept) from the pin to the line.

The unknown current distribution on the line and the

pin is expanded as

7(Xo, yo, 2.) = f [.I,”C(XO, y.) + .lFef (Xo, y.)

N

+ z Jj(xo, y.)] 61(Z0– ~)
j=)

+ Za.la(xo, yo, z.) (7)

where ~a(xO, yO, ZO) is the attachment mode, and J.., J.y,
and J.Z are defined in (3), (5), and (6), respectively. The

~ piecewise sinusoidal (PWS) expansion functions and JinC

and ~,~f represent traveling waves of the fundamental mi-

crostrip mode as in [12]. The 11, 12, 0 0 0 IN, and 1. are the

unknown coefficients of the current expansion modes.

To satisfy the boundary condition on the line, we have

[z] =

[I] =

[v] =

To satisfy the boundary condition on the pin, we have

(1 - Z@ ’c(xp, Yp, z) + j(l + Z?)ES(.XP,Yp, z)

N

+ z $i,(xp, yp, z) + LA(xp, Y/), z) = 0,j=l

on the pin. (9)

Now, we have a pair of equations with N + 2 unknowns.

These unknowns are the complex amplitudes of the N

PWS modes, the attachment mode and the complex volt-

age reflection coefficient. The moment method is used to

discretize the EFIE’s into a matrix equation for the N +

2 unknowns. PWS functions were chosen as the first N +

1 testing functions. The N + 2 testing function is a pulse

function that exists on the pin. To account for the finite

radius of the pin, a thin wire approximation is used as in

[18].

Thus, we obtain a matrix equation for the unknown coef-

ficients as

[z] [z] = [u] (lo)

where

r z,, ““” Z,N (–z,c + jz,,)

Z2, ““”ZZN ( –z~c + jz7J

zN+,,l ““” ZN+l,N (–ZN+l, C+jZN+l, ~)

I_zo, . e . za~

11
z,

1~

IN

R

I.

[

–ZIC – jZl,

–Z2C – jZ2,

‘.ZN+I,C + jZN+

–ZaC – jZ,,

1,s

( –Zac + jza.)

1
For further details,

Z,a

G.

zN+l,~

z aa ‘1

readers can

(11)

(12)

(13)

refer to [12] and [20].
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Fig. 2, Current distribution of the basis functions.
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Fig. 3. Equivalent model for generating the attachment mode.

A computer program has been written to evaluate the

impedance matrix and voltage vector elements, and to

solve for the coefficients of the current expansion modes

and the voltage reflection coefficient.

III. RESULTS

In order to verify the theory discussed above, several

experiments were performed and the results compared to

theory. For general purpose applications, we choose the

width of the microstrip line such that its characteristic

impedance is about 50 Q. This width becomes electrically

large at higher frequencies. Because of this, we expect

higher error will occur at higher frequencies since our

model ignores y-directed current on the line, which be-

come increasingly important as the line width becomes

electrically larger. We also need to identify possible

sources of measurement error in order to improve the

measurement accuracy. One possible source of error is the

discontinuity which exists due to the transition from coax-

ial cable connector to the micro strip line. In the theoreti-

cal treatment, it is assumed that the source is located at

infinity, and a traveling wave with the fundamental mode

effective propagation constant is incident upon the dis-

continuity. In reality, we have a limitation on the length

of the line due to our spinner size. However, we can use
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Fig. 4. Reflection coefficient magnitude of an open-end microstrip line

the time-gating feature of the HP-8510 vector network

analyzer which involves numerically transforming from

frequency-domain to time-domain to remove the effect of

the discontinuity. Using this technique, we obtain good

results for line lengths longer than about 12 cm. We also

measure over a 11 GHz bandwidth to insure good results

using the time-gating technique.
Fig. 4(a) and (b) shows the calculated and measured

data for two open-end microstrip lines. The open-end
model is based on the one used in [12] which assumes that

only x-directed current exists on the microstrip line. As

can be seen, the error can be as high as 20% at higher

frequencies.

Fig. 5 shows comparison of the measured reflection

coefficient magnitude between an open-end and open-end

with the shorting pin microstrip lines. One difference be-

tween them is that a resonant behavior is observed. At

lower frequencies, radiation from the open-end is not very

significant. Thus, two curves stay close to each other.

However, at higher frequencies, radiation from the open-
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Fig. 9. Calculated reflection coefficient magnitude for different pin radii.

end becomes more significant. Some power is reflected by

the shorting pin before it reaches the open-end. Thus,

more power is reflected back to the source and the reflec-

tion coefficient magnitude is greater.

Fig. 6 shows an equivalent transmission line circuit

which can be used to explain the resonant phenomenon.

With one end open and the other end partially shorted, a

quarter wavelength resonator is formed. By using the ef-

fective propagation constant at the resonant frequency to

calculate the quarter wavelength distance, we can confirm

the above idea.

Fig. 7(a) and (b) shows comparison of the reflection

coefficient magnitude between an open-end microstrip line

with a shorting pin and measurements. The model accu-

rately describes the resonant behavior near the open-end.

But, due to the neglect of the y-directed current compo-

nent, we have a result where the error can be as high as

30% at higher frequencies.

Fig. 8 shows the calculated reflection coefficient “mag-

nitude of the open-end with the shorting pin for different

pin position. The resonant frequency moves to higher fre-

quency and the resonant bandwidth becomes larger when

the pin position is moved closer to the open-end. The re-

sult is reasonable because the closer the pin position is to
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the open-end, the smaller the effective resonant frequency

quarter-wavelength. Thus, there is more radiation from

the open-end.

Fig. 9 shows the calculated reflection coefficient mag-

nitude of the open-end with the shorting pin for different

pin radii. As the pin radius increases, the quarter-wave-

length resonator has a higher Q and the resonant band-

width becomes smaller. Also, because the effective

quarter-wavelength becomes smaller, the resonant fre-

quency increases. When the pin radius is very small, the

resonant phenomenon becomes insignificant, and the

structure acts like an open-end.

IV. CONCLUSION

A full-wave analysis has been presented for the prob-

lem of open-end microstrip line terminated with a short-

ing pin, We have been able to obtain a good approxima-

tion for this complicated problem and give some direction

for future research, The author has written an efficient

ble candidate of this error. For example, no attempt was

made to model ohmic losses due to the finite conductivity

of the conductors, or the surface wave radiation at the

substrate edge due to the finite substrate and ground plane

[19]. In addition, the assumption of uniform current on

the pin limits accuracy as the substrate gets electrically

thicker at higher frequencies.

By including the y-directed current component in our

model, we introduce more unknown current expansion

mode coefficients, and as a result, a new set of testing

function is required to discretize the integral equation.

Since the complexity has increased, the computational ef-

ficiency may be significantly decreased. Thus, more effort

on reducing the computation time is necessary in future

research.

APPENDIX

(Al) through (A3) define the spectral domain Green’s

function for an infinitesimal x-directed current source:

GA, ky,z 14 =
–jZO(6.k~ – k3k2 cos (k, d) + .jkl(k% – lc~) sin (k, d)

T, TM
sin (k, z)

jzo kXkY[k2 cos (k] d) + jkl sin (kl d)]
GY.(k., kY, z Id) = ~

Te T.
sin (kl z)

0

ZO kxk2 COS(kl z)
Gu(kX, kY, Z Id) = ~ T .

0 m

(A4) through (A6) define the spectral domain Green’s function for an infinitesimal y-directed current source:

jzo kXkY[k2 cos (k, d) + jkl sin (ki d)]
Gx,(kx, kY, z Id) = ~

T. T.
sin (kl z)

–jZO (e,k~ – k~)kz cos (k, d) + jkl(k~ – k$) sin (k, d)
GYY(k~, kY, z Id) = ~ sin (kl z)

0

ZO kYk2 COS(k, @
G,Y(k., kY, z Id) = ; T .

0 m

program to calculate the theoretical results. The typical

running time for a single frequency on a CRAY X-MP/

18se supercomputer is about 200 s. For the open-end, the

reflection coefficient magnitude has been calculated using

the theory of [12] and compared with the measured data.

The error can be as large as 20% at higher frequencies.

The reason for this error is probably that y-directed cur-

rent components are neglected. While this approximation

is valid for electrically narrow lines, it becomes increas-

ingly crude as the electrical width of the line increases.

For the open-end with the shorting pin, the reflection coef-

ficient magnitude also has been calculated and compared

with the measured data. The error can be as large as 30%

at higher frequencies. Since we have considered x-, y-,

and z-directed current components in our attachment mode

model, the resonant behavior is accurately described by

this model. Thus, we expect that most of the error is com-

ing from ignoring the contribution of the y-directed cur-

rent. However, some other factors can also be the possi-

T, T.

(A7) through (A9) define

function for an infinitesimal

(Al)

(A2)

(A3)

(A4)

(AS)

(A6)

the spectral domain Green’s

z-directed current source:

–Z. k.,kzcos (kl ZO)

GxZ(kx, k,, dl 20 s d) = ~
T/n

(A7)
o

–Z kYk2 COS(k] ZO)

G.,Jk, & d I Z. s d) = &
T.

. (As)
0

[
–ti(z – Zo) +

62 COS(k, z)

k, T~

/

“ {~,k2 sin [kl(d - zJI
—— – jkl cos [k,(d – zJI}, ()< Z<ZO

1

62 c~~~~’ ‘0) {e,k2 sin [kl(d - z)]

\ – jkl cos [kl(d – z)]}, z.<z<d )

(A9)
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