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Analysis of a Microstrip Line Terminated with a
Shorting Pin

Wen-Jiunn Tsay and James T. Aberle

Abstract—A full-wave moment method solution to the prob-
lem of a semi-infinite microstrip line terminated with a shorting
pin is presented. The electric current on the line is expanded in
terms of longitudinal piecewise sinusoidal modes near the open
end, with entire domain traveling-wave modes to represent in-
cident and reflected waves away from the open end. Also, the
electric current near the shorting pin is simulated by an at-
tachment mode which insures continuity of the current between
the pin and the line and models the rapidly-varying current on
the line near the feed connection point. Results are given for
the magnitude of the reflection coefficient and are compared
with experimental data.

I. INTRODUCTION

ECAUSE of its easy mounting capabilities and inex-

pensive fabrication processes, microstrip line is the
most often selected transmission medium for use in mi-
crowave and millimeter-wave integrated circuit applica-
tions. ‘

Discontinuities in the microstrip line are frequently used
as circuit elements in device design. Because these dis-
continuities are rarely amenable to closed-form solution,
some level of modeling must be used in their design and
analysis. The simplest and most computationally efficient
models use quasi-static techniques to describe the discon-
tinuities in terms of equivalent lumped-element circuits.
Such models are used in many computer-aided design
(CAD) packages. However, these simple models are often
inadequate for use in the design of many advanced sys-
tems, because they fail to account fully for the electro-
magnetic effects of the discontinuities.

In many cases, it is uneconomical or impossible to fine-
tune the circuit once it has been fabricated. As a result,
circuit designers are forced to perform a costly iterative
cut-and-try stage in the design. Thus, there has been a
great deal of interest in more accurate treatments of mi-
crostrip discontinuities [1]-[7]. Because many of these
more rigorous solutions require large amounts of com-
puter time and memory, they have to date been considered
unattractive candidates for use in a CAD package. How-
ever, recent advances in the capabilities of engineering
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workstations and supercomputers are helping to alleviate
this situation. In the near future, we can expect significant
improvements in this area.

Because of significant advantages over the method of
lines [7]-[8] and the finite difference method [4]-[6]. the
integral equation technique [9]-[16] is the best approach
for the invetsigation of microstrip discontinuities. The
most appropriate method for obtaining the integral equa-
tion description of the problem under consideration is the
spectral domain approach [11], [12], [18]. Formulation
of the problem is facilitated in the spectral domain since
the Green’s function for the planar structure is given in
closed-form. While variational solutions for the integral
equations have been obtained [9], better accuracy can be
obtained using the moment method.

Numerical models for the discontinuities studied here
have been developed using the spectral domain approach
to obtain an electric field integral equation (EFIE) de-
scription of the problem. The EFIE is discretized using
the moment method, and the resulting matrix equations
are solved on the computer.

The solution presented here represents an attempt to ex-
tend the theory of [12] to the case of a microstrip line
terminated with a shorting pin. At lower frequencies, the-
oretical and experimental results closely agree with each
other. But, error can be as large as 30% at higher fre-
quencies. We attribute these errors at higher frequencies
mainly to the neglect of the transverse current component.
More work is needed to overcome this deficiency.

II. THEORY

Consider a semi-infinite microstrip line with a shorting
pin connected to the ground plane in the vicinity of the
open end, as shown in Fig. 1. The ground plane, micro-
strip line and shorting pin are all assumed to comprise
perfect electric conductor, and the substrate is assumed to
be infinite in the x- and y-directions. The substrate is of
thickness d which is assumed to be very thin such that
only the fundamental mode can propagate in the micro-
strip line. The upper conductor has width w. The pin con-
nection point is located at (x, y) = (x,, ¥,), and the radius
of the pin is #,, which is assumed to be much smaller than
the effective wavelength.

The full-wave solution for this problem developed here
requires 1) the infinite grounded dielectric slab dyadic
Green’s function for the electric field due to an electric
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Fig. 1. Open-end microstrip line terminated with a shorting pin.

current distribution, 2) the effective propagation constant
of an infinitely long microstrip line, and 3) current expan-
sion modes that can accurately account for the natural cur-
rent behavior of the structure. We set up an integral equa-
tion description of the boundary condition that the
tangential electric field must vanish on the microstrip line
and the shorting pin, and expand the unknown current in
a suitable set of basis functions. By following Galerkin’s
procedure, we can determine the unknown current and,
thus, the voltage reflection coefficient of the discontinu-
ity. This solution is ‘‘full-wave’’ because all of the elec-
tromagnetic features of the problem such as surface wave
and radiation effects are included in the solution since the
the exact Green’s function for the structure is used.

The dyadic Green’s function for the electric field due
to an electric current distribution in and on a grounded
dielectric slab is well-known in both spatial and spectral
domain forms. In this paper, the spectral domain form is
used.

In dyadic form, the Green’s function can be written as

E = £E.f + 2E,§ + £E.% + JE, % + $E, 9
+ §E. ¢ + 2E, £ + 2E,9 + 2E,.4 (1)

where
1 @ o
qu(x’ y’ leo, y07 Zo) = ZF S_ S7 qu(kx7 ky7 Z | ZU)

. ejkv(x“x()) eﬂ‘v(,"_)’r)) dkr dky (2)

and E, (X, y, 2| X,, ¥, Z,) is the p-directed electric field at
the point (x, y, z) due to an infinitesimal §-directed current
element at (x,, y,, z,). The G,,;’s required in this analysis
are given in the Appendix.

1

The effective propagation constant of an infinitely long
microstrip line is also required for this analysis and may
be obtained using the full-wave technique described in
[12]. The method of solution involves expanding the elec-
tric current density on the microstrip line and on the short-
ing pin, then formulating an electric field integral equa-
tion (EFIE) which can be solved by the method of
moments for the reflection coefficient and the unknown
expansion currents. The choice of basis functions affects
the computational efficiency quite significantly, so a ju-
dicious choice is important.

Because of the complicated discontinuous nature of the
current on the microstrip line near the pin attachment
point, it is very difficult to accurately describe the current
behavior of this discontinuity using simple basis func-
tions. The approach used here is similar to the one used
in [18].

There are three kinds of basis functions used here,
which are the sinusoidal modes, the piecewise sinusoidal
(PWS) modes, and the attachment mode. Fig. 2 qualita-
tively illustrates these modes. For sinusoidal and piece-
wise sinusoidal modes, the current distribution in the
y-direction is assumed to be Maxwellian.

Since we assume only the fundamental microstrip mode
can propagate down the line when it is away from the
open end and the shorting pin, it is reasonable to use sin-
usoidal functions to represent incident and reflected trav-
eling waves of the fundamental microstrip mode. Subsec-
tional (piecewise sinusoidal) modes are used near the open
end to represent currents that do not conform to the fun-
damental mode as in [12]. These basis functions together
with their Fourier transforms (required for the spectral do-
main analysis) are described in detail in [12].

A critical component of our solution is the use of a suit-
able basis function which can insure continuity of current
from the microstrip line to the shorting pin and model the
rapidly-varying surface current near the pin connection
point. The method used to generate this attachment mode
is similar to [18].

Because the line is semi-infinite, it is assumed that the
part of the attachment mode on the microstrip line only
exists between x = 0 and x = L1. Using this assumption,
we can obtain an equivalent model for generating an at-
tachment mode with the desired properties. The equiva-
lent model is shown in Fig. 3, and consists of a uniform
current probe exciting a rectangular cavity comprising
perfect electric conductor on top and bottom and perfect
magnetic conductor around the sides. Since d is very thin
we can assume that there is no z-variation and only TM,
modes can exist inside the structure. This equivalent
model can be treated as a traditional boundary value prob-
lem.

Solving for the surface current density on the upper
conductor, we obtain

‘]ax(x7 )’) = 5‘; ngo €, COS W ; y

<I’l7f > <l’l7T > Sin [6}01(141 - X - xp)] + sgn (x - p) Sil’l [ﬁxn(Ll - I'x - xpi)
—yp Cos

sin (,,L1)
3
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where (1 — BE.(x,y,d) + jQd + RE(,y, d)

N
1, ifr>0 + 2 LE(x,y,d) + LEx, y,d) =0,
sgn(r)={ . } @ 5 By 2 d)

-1, ift <0 on the line. ®
2 o -1 o "_'”cos nr ) i nw cos [Bu(L1 — x — x,)] + cos [B(L1 — |x — x,|)] s
ay %> ) = W oa=1 W w y,,/ w Y B, sin (B,,L1) ’ )

The z component of the attachment mode exists on the pin
and is given by

T, 3) = 28(x — x,) 8(y = ¥,). (6)

The attachment mode basis function described by. (3),
(5), and (6) exhibits proper behavior near the pin connec-
tion point and enforces continuity of current (through the
end-charge cancellation concept) from the pin to the line.

The unknown current distribution on the line and the
pin is expanded as

7(xm Yo» ZO) = 'f[‘]mc(xm yo) + ]ref(xn’ yo)
N
+ ng] L f,(x,, ¥,)] 6(z, — d)

+ 1T oXos Yo 20) )

where .7a(x0, Yo» %) is the attachment mode, and J,,, J,,,
and J,, are defined in (3), (5), and (6), respectively. The
f, piecewise sinusoidal (PWS) expansion functions and J;,.
and J..; represent traveling waves of the fundamental mi-
crostrip mode as in [12]. The I}, I,, * + - Iy, and I, are the
unknown coefficients of the current expansion modes.

To satisfy the boundary condition on the line, we have

_Zn © iy
Zy © Zon
Z1=| :
Zyi “Zyian
:Zal © Ly
1 |
I
=1,
R
L]
[ ~Zic — jZ B}
~Zye ~ JjZos
vi= :
~Zyiie T JInsas
| ~Zye — JZss _

To satisfy the boundary condition on the pin, we have

(1 = RE. (%, ypr 2 + j(1 + BEc(x,, ¥y, 2)

N
+ 2 LE Gy Yy ) + LEdsy, ¥ 2) = 0,

on the pin.

&)

Now, we have a pair of equations with N + 2 unknowns.
These unknowns are the complex amplitudes of the N
PWS modes, the attachment mode and the complex volt-
age reflection coefficient. The moment method is used to
discretize the EFIE’s into a matrix equation for the N +
2 unknowns. PWS functions were chosen as the first N +
1 testing functions. The N + 2 testing function is a pulse
function that exists on the pin. To account for the finite
radius of the pin, a thin wire approximation is used as in
[18].

Thus, we obtain a matrix equation for the unknown coef-
ficients as

[Z11] = [v] (10)
where
(—Zlc + jzls) Zla ]
(_Z2(‘ + jZ’.’s) ZZa
: : (11)
(=Zyst,e T JZnv1s) Zn+1a
(_Zac + jZas) Zaa —
(12)
(13)

For further details, readers can refer to [12] and [20].
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Fig. 2. Current distribution of the basis functions.
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Fig. 3. Equivalent model for generating the attachment mode.

A computer program has been written to evaluate the
impedance matrix and voltage vector elements, and to
solve for the coefficients of the current expansion modes
and the voltage reflection coefficient.

III. RESULTS

In order to verify the theory discussed above, several
experiments were performed and the results compared to
theory. For general purpose applications, we choose the
width of the microstrip line such that its characteristic
impedance is about 50 €. This width becomes electrically
large at higher frequencies. Because of this, we expect

higher error will occur at higher frequencies since our

model ignores y-directed current on the line, which be-
come increasingly important as the line width becomes
electrically larger. We also need to identify possible
sources of measurement error in order to improve the
measurement accuracy. One possible source of error is the
discontinuity which exists due to the transition from coax-
ial cable connector to the microstrip line. In the theoreti-
cal treatment, it is assumed that the source is located at
infinity, and a traveling wave with the fundamental mode
effective propagation constant is incident upon the dis-
continuity. In reality, we have a limitation on the length
of the line due to our spinner size. However, we can use
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Fig. 4. Reflection coefficient magnitude of an open-end microstrip line.

the time-gating feature of the HP-8510 vector network
analyzer which involves numerically transforming from
frequency-domain to time-domain to remove the effect of
the discontinuity. Using this technique, we obtain good
results for line lengths longer than about 12 cm. We also
measure over a 11 GHz bandwidth to insure good results
using the time-gating technique.

Fig. 4(a) and (b) shows the calculated and measured
data for two open-end microstrip lines. The open-end
model is based on the one used in [12] which assumes that
only x-directed current exists on the microstrip line. As
can be seen, the error can be as high as 20% at higher
frequencies.

Fig. 5 shows comparison of the measured reflection
coefficient magnitude between an open-end and open-end
with the shorting pin microstrip lines. One difference be-
tween them is that a resonant behavior is observed. At
lower frequencies, radiation from the open-end is not very
significant. Thus, two curves stay close to each other.
However, at higher frequencies, radiation from the open-
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Fig. 9. Calculated reflection coefficient magnitude for different pin radii.

end becomes more significant. Some power is reflected by
the shorting pin before it reaches the open-end. Thus,
more power is reflected back to the source and the reflec-
tion coefficient magnitude is greater.

Fig. 6 shows an equivalent transmission line circuit
which can be used to explain the resonant phenomenon.
With one end open and the other end partially shorted, a
quarter wavelength resonator is formed. By using the ef-
fective propagation constant at the resonant frequency to
calculate the quarter wavelength distance, we can confirm
the above idea.

Fig. 7(a) and (b) shows comparison of the reflection
coefficient magnitude between an open-end microstrip line
with a shorting pin and measurements. The model accu-
rately describes the resonant behavior near the open-end.
But, due to the neglect of the y-directed current compo-
nent, we have a result where the error can be as high as
30% at higher frequencies. ‘

Fig. 8 shows the calculated reflection coefﬁment mag-
nitude of the open-end with the shorting pin for different
pin position. The resonant frequency moves to higher fre-
quency and the resonant bandwidth becomes larger when
the pin position is moved closer to the open-end. The re-
sult is reasonable because the closer the pin position is to
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the open-end, the smaller the effective resonant frequency
quarter-wavelength. Thus, there is more radiation from
the open-end.

Fig. 9 shows the calculated reflection coefficient mag-
nitude of the open-end with the shorting pin for different
pin radii. As the pin radius increases, the quarter-wave-
length resonator has a higher Q and the resonant band-
width becomes smaller. Also, because the effective
quarter-wavelength becomes smaller, the resonant fre-
quency increases. When the pin radius is very small, the
resonant phenomenon becomes insignificant, and the
structure acts like an open-end.

IV. CONCLUSION

A full-wave analysis has been presented for the prob-
lem of open-end microstrip line terminated with a short-
ing pin. We have been able to obtain a good approxima-
tion for this complicated problem and give some direction
for future research. The author has written an efficient

ble candidate of this error. For example, no attempt was
made to model ohmic losses due to the finite conductivity
of the conductors, or the surface wave radiation at the
substrate edge due to the finite substrate and ground plane
[19]. In addition, the assumption of uniform current on
the pin limits accuracy as the substrate gets electrically
thicker at higher frequencies.

By including the y-directed current component in our
model, we introduce more unknown current expansion
mode coeflicients, and as a result, a new set of testing
function is required to discretize the integral equation.
Since the complexity has increased, the computational ef-
ficiency may be significantly decreased. Thus, more effort
on reducing the computation time is necessary in future
research.

APPENDIX

(A1) through (A3) define the spectral domain Green’s
function for an infinitesimal x-directed current source:

—~iZ (e, k3 — k2 k k ki (k2 — k2) sin (k,d

Gty kyy 2| d) = JZeky — ki) ks cos (%d; + jki(k, ;) sin (k, )sin k,2) (A1)
iz, k.k,[k, cos (kid) + jk, sin (k;d)]

Gl kyy 2] d) =222 == T sin (k) (A2)

(4 ¢ m

Z, k.k k

Gl by, 2] d) = 22 £ 28 (1) (A3)

(A4) through (A6) define the spectral domain Green’s function for an infinitesimal y-directed current source:

iZ, kikylky cos (kyd) + jky sin (k;d)]

G,k ky, 2| d) = Jk— : - sin (k,2) (A4)
—jZ, (e, k2 — k2)k kid) + jk(k2 — k2) sin (k;d

Gyv(kx, kv, Z|d) — J (E y) 2 COS ( 1 ) J l( o }) sin ( 1 ) sin (k] Z) (AS)

: ) ko I.T,

Z, kyk, cos (k,z)

Gylkso ky, 2|d) = 22 = (A6)

program to calculate the theoretical results. The typical
running time for a single frequency on a CRAY X-MP/
18se supercomputer is about 200 s. For the open-end, the
reflection coefficient magnitude has been calculated using
the theory of [12] and compared with the measured data.
The error can be as large as 20% at higher frequencies.
The reason for this error is probably that y-directed cur-
rent components are neglected. While this approximation
is valid for electrically narrow lines, it becomes increas-
ingly crude as the electrical width of the line increases.
For the open-end with the shorting pin, the reflection coef-
ficient magnitude also has been calculated and compared
with the measured data. The error can be as large as 30%
at higher frequencies. Since we have considered x-, y-,
and z-directed current components in our attachment mode
model, the resonant behavior is accurately described by
this model. Thus, we expect that most of the error is com-
ing from ignoring the contribution of the y-directed cur-
rent. However, some other factors can also be the possi-

(A7) through (A9) define the spectral domain Green’s
function for an infinitesimal z-directed current source:

_Zo k_\,kQCOS (kl Zo)

Gtk ky, d|z, < d) = A T (A7)
—Z k,k, cos (k;z,
Gtk by dz, = dy = 2o 08 E2) o)
) ko T,
Gk, ky, 2 < d|z, < d)
[ B2 cos (k;2)
— — + _ 4
6(z — z,) kT, \

- {e,k; sin [k(d — z,)]
— jky cos [ki(d — Zo)]},

B2 cos (k; z,)
kl Tm

\ ~ jki cos [ki(d — 2)1},

Ny

Oszszﬁ

{e,k, sin [k(d — 2)]

IA
&

7, <2
(A9)
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